Demba Ba

Harvard University
School of Engineering and Applied Sciences
Maxwell Dworkin
33 Oxford st Cambridge, MA 02138
Phone: (617) 496-1228
Office: MD 143
Email: demba@seas.harvard.edu
Homepage: http://demba-ba.org/
Group page: http://crisp.seas.harvard.edu/

Education

  • Ph.D. EECS, Massachusetts Institute of Technology, 2011.
  • M.S. EECS, Massachusetts Institute of Technology, 2006.
  • B.S. Electrical Engineering, University of Maryland, College Park, 2004.

Professional Appointments

  • Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
    Assistant Professor of Electrical Engineering and Bioengineering (July 2015–Present)
  • Neuroscience Statistics Research lab, Cambridge, MA
    Massachusetts Institute of Technology
    Research Assistant/Post-doc fellow (Fall 2007–Summer 2014)
  • Google - Anomaly Detection and Trend Estimation, Mountain View, CA
    Summer Intern (June 2010–September 2010)
  • Microsoft Research – Communications and Collaboration Systems Group, Redmond, WA
    Summer Intern (June 2006/2009–September 2006/2009)

Awards & Honors

  • 2016 Fellow in Neuroscience of the Alfred P. Sloan Foundation
  • Spotlight Presentation at Advances in Neural Information Processing Systems 25 (NIPS 2012) [< 5% acceptance rate]
  • ICME 2010 Best Student Paper Award (for summer 2009 work at MS Research)
  • University of Maryland Engineering honors citation
  • A Scholars Programs for Industry-oriented Research in Engineering

Relevant Coursework

Discrete-time Signal Processing, Stochastic Processes Detection and Estimation, Statistical Learning and Estimation, High-dimensional Statistics, Dynamic systems and Control, Advanced Computational Photography, Principles of Digital Communication, Abstract Linear Algebra, Real Analysis, Functional Analysis.

Presentations

Technical Talks

  • “Estimating a separable random field from binary data.” Center for Brain Science, Harvard University, November 2016.
  • “Estimating a separable random field from binary data.” Department of ECE, SILO Seminar Series, University of Wisconsin – Madison, October 2016.
  • “Estimating structured state-space models from point-process data.” Neurocontrol Workshop, Automatic Control Conference, Boston MA, July 2016.
  • “Estimating structured state-space models from point-process data.” Second Workshop on Modelling Neural Activity, Waikoloa HI, June 2016.
  • “New time frequency tools toward a more precise characterization of rhythms from the brain.” Institute of Applied and Computational Sciences, Harvard University, February 2016.

Non-technical Talks

  • “Labz ‘n da wild: teaching signal processing using wearables and jupyter notebooks in the cloud.” Scientific Computing with Python 2016 (Scipy 2016), July 2016 (with Faras Sadek, Yasha Iravantchi and Yingzhuo (Diana) Zhang).
  • “Wearable signal processing using docker notebook containers on AWS.” Jupyter Day Boston, Harvard University, February 2016 (with Faras Sadek, Yasha Iravantchi and Yingzhuo (Diana) Zhang).

Conference Proceedings

  1. Yingzhuo Zhang, Noa Shinitski, Stephen Allsop, Kay Tye, and Demba Ba. A two-dimensional seperable random field model of within and cross-trial neural spiking dynamics. In Computational and Systems Neuroscience (COSYNE), 2017
  2. Noa Shinitski, Yingzhuo Zhang, Daniel Gray, Sarah Burke, Anne Smith, Carol Barnes, and Demba Ba. Can you teach an old monkey a new trick? In Computational and Systems Neuroscience (COSYNE), 2017
  3. Gabriel Schamberg, Demba Ba, Mark Wagner, and Todd Coleman. Efficient low-rank spectrotemporal decomposition using admm. In Statistical Signal Processing, 2016. SSP’16. IEEE/SP 19th Workshop on. IEEE, 2016
  4. Demba Ba, Behtash Babadi, Patrick L Purdon, and Emery N Brown. Neural spike train denoising by point process re-weighted iterative smoothing. In 48th Asilomar Conference on Signals, Systems and Computers., pages 763–768. IEEE, 2014. doi:10.1109/ACSSC.2014.7094552.
  5. Demba Ba, Behtash Babadi, Patrick L Purdon, and Emery N Brown. Exact and stable recovery of sequences of signals with sparse increments via differential ℓ1-minimization. Advances in Neural Information Processing Systems, 25, pages 2636–2644, 2012.
  6. Flavio Ribeiro, Demba Ba, Cha Zhang, and Dinei Florencio. Turning enemies into friends: Using reflections to improve sound source localization. In Multimedia and Expo (ICME), 2010 IEEE International Conference on, pages 731–736. IEEE, 2010. doi:10.1109/ICME.2010.5583886.
  7. Demba Ba, Flavio Ribeiro, Cha Zhang, and Dinei Florencio. L1 regularized room modeling with compact microphone arrays. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on, pages 157–160. IEEE, 2010. doi:10.1109/ICASSP.2010.5496093.

Refereed Journal Articles

  1. Gabriela Czanner, Sridevi V Sarma, Demba Ba, Uri T Eden, Wei Wu, Emad Eskandar, Hubert H Lim, Simona Temereanca, Wendy A Suzuki, and Emery N Brown. Measuring the singal-to-noise ratio of a neuron. Proceedings of the National Academy of Sciences, 112(23):E7141–E7146, 2015. doi:10.1073/pnas.1505545112.
  2. Demba Ba, Behtash Babadi, Patrick L Purdon, and Emery N Brown. Convergence and stability of iteratively re-weighted least-squares algorithms. IEEE TSP, 62(1), 2014. doi:10.1109/TSP.2013.2287685.
  3. Demba Ba, Behtash Babadi, Patrick L Purdon, and Emery N Brown. Robust spectrotemporal decomposition by iteratively reweighted least squares. Proceedings of the National Academy of Sciences, 111(50):E5336–E5345, 2014. doi:10.1073/pnas. 1320637111.
  4. Demba Ba, Simona Temereanca, and Emery N Brown. Algorithms for the analysis of ensemble neural spiking activity using simultaneous-event multivariate point-process models. Frontiers in computational neuroscience, 8, 2014. doi:10.3389/fncom.2014. 00006.
  5. Luca Citi, Demba Ba, Emery N Brown, and Riccardo Barbieri. Likelihood methods for point processes with refractoriness. Neural computation, 26(2):237–263, 2014. doi:10.1162/NECO_a_00548.
  6. Flavio Ribeiro, Dinei Florencio, Demba Ba, and Cha Zhang. Geometrically constrained room modeling with compact microphone arrays. Audio, Speech, and Language Processing, IEEE Transactions on, 20(5):1449–1460, 2012. doi:10.1109/ TASL.2011.2180897.
  7. Flavio Ribeiro, Cha Zhang, Dinei Florencio, and Demba Ba. Using reverberation to improve range and elevation discrimination for small array sound source localization. Audio, Speech, and Language Processing, IEEE Transactions on, 18(7):1781–1792, 2010. doi:10.1109/TASL.2010.2052250.
  8. Cha Zhang, Dinei Florencio, Demba Ba, and Zhengyou Zhang. Maximum likelihood sound source localization and beamforming for directional microphone arrays in distributed meetings. Multimedia, IEEE Transactions on, 10(3):538–548, 2008. doi: 10.1109/TMM.2008.917406.

Courses Taught

  • Harvard Course ES 201: Decision Theory (Lecturer Spring 2017)
  • Harvard Course ES 155: Biomedical Signal Processing and Computing (Lecturer Spring/Fall, 2016)
  • MIT Course 9.073: Statistics for Neuroscience Research (Lecturer Spring 2015)
  • MIT Course 9.272J: Topics in Neural Signal Processing (Lecturer Spring 2013/2014)
  • MIT Course 6.003: Signals and Systems (Head Teaching Assistant Fall 2007)
  • MIT Course 6.002: Circuits and Electronics (Teaching Assistant Fall 2004/2006, Spring 2005/2007)

Skills

  • Computer: Proficient: Python, Matlab/Octave. Experienced: C,C++,JavaScript.
  • Spoken Languages: French, English, Spanish.

References

Last updated: 2017/02/08 at 10:56:19